Utility-Fairness Trade-Offs and How to Find Them

Sepehr Dehdashtian, Bashir Sadeghi, Vishnu N. Boddeti

{sepehr, sadeghib, vishnu} @ msu.edu

Michigan State University

How Fair is Your ML Model?

Questions that We Answer

    1. What are the definitions of DST and LST?
    2. How can we empirically estimate them?

Definitions

Fairness Definitions

  • Demographic Parity (DP) \[ P(\hat{Y} = 1 | {\color{red} S = s}) = P(\hat{Y} = 1 | {\color{red} S = s'}) \]
  • Equalized Opportunity (EO) \[ P(\hat{Y} = 1 | {\color{green} Y = 1}, {\color{red} S = s}) = P(\hat{Y} = 1 | {\color{green} Y = 1}, {\color{red} S = s'}) \]
  • Equality of Odds (EOO) \[ P(\hat{Y} = 1 | {\color{green} Y = 1}, {\color{red} S = s}) = P(\hat{Y} = 1 | {\color{green} Y = 1}, {\color{red} S = s'}) \\ \text{\&} \\ P(\hat{Y} = 1 | {\color{green} Y = 0}, {\color{red} S = s}) = P(\hat{Y} = 1 | {\color{green} Y = 0}, {\color{red} S = s'}) \]

How to Estimate these Trade-Offs?

U-FaTE ( Utility-Fairness Trade-Off Estimator) U-FaTE

Objective Function

\[ \min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{black}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{black}\ +}\ \frac{\lambda}{(1 - \lambda)} {\color{black}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\} \] \[ \min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{green}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{black}\ +}\ \frac{\lambda}{(1 - \lambda)} {\color{black}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\} \] \[ \min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{green}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{red}\ +}\ \frac{\lambda}{(1 - \lambda)} {\color{red}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\} \] \[ \min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{green}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{red}\ +}\ {\color{purple} \frac{\lambda}{(1 - \lambda)}} {\color{red}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\} \]
Preserves
Y
Information
Trade-Off Control Parameter
Removes
S
Information

Training

U-FaTE

Experimental Evaluation

How far are existing FRL methods from the two trade-offs? U-FaTE

Experimental Evaluation

How far are CLIP's zero-shot predictions from the trade-offs? U-FaTE

Experimental Evaluation

How far are pre-trained supervised image models from the trade-offs? U-FaTE

Thank you!