\[
\min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{black}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{black}\ +}\ \frac{\lambda}{(1 - \lambda)} {\color{black}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\}
\]
\[
\min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{green}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{black}\ +}\ \frac{\lambda}{(1 - \lambda)} {\color{black}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\}
\]
\[
\min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{green}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{red}\ +}\ \frac{\lambda}{(1 - \lambda)} {\color{red}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\}
\]
\[
\min_{\Theta_{FE}, \Theta_{Enc}} \Big\{ \mathcal{L} = {\color{green}-\ \text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), Y)} {\color{red}\ +}\ {\color{purple} \frac{\lambda}{(1 - \lambda)}} {\color{red}\text{Dep}(f(X; \Theta_{FE}, \Theta_{Enc}), S)}\Big\}
\]
Preserves
Y
Information
Trade-Off Control Parameter
Removes
S
Information